38 research outputs found

    Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG

    Get PDF
    Recently, it has been shown that human ejaculate enhances human immunodeficiency virus 1 (HIV-1) infectivity. Enhancement of infectivity is conceived to be mediated by amyloid filaments from peptides that are proteolytically released from prostatic acid phosphatase (PAP), termed Semen-derived Enhancer of Virus Infection (SEVI). The aim of this study was to test the range of HIV-1 infectivity enhancing properties of a large number of individual semen samples (n = 47) in a TZM-bl reporter cell HIV infection system. We find that semen overall increased infectivity to 156% of the control experiment without semen, albeit with great inter- and intraindividual variability (range -53%-363%). Using transmission electron microscopy, we provide evidence for SEVI fibrils in fresh human semen for the first time. Moreover, we confirm that the infectivity enhancing property can be inhibited by the major green tea ingredient epigallocatechin-3-gallate (EGCG) at non-toxic concentrations. The median inhibition of infection by treatment with 0.4 mM EGCG was 70.6% (p < 0.0001) in our cohort. Yet, there were substantial variations of inhibition and in a minority of samples, infectivity enhancement was not inhibited by EGCG treatment at all. Thus, topical application of EGCG may be a feasible additional measure to prevent the sexual transmission of HIV. However, the reasons for the variability in the efficacy of the abrogation of semen-mediated enhancement of HIV-1 infectivity and EGCG efficacy have to be elucidated before therapeutic trials can be conducted

    A short-term plastic adherence incubation of the stromal vascular fraction leads to a predictable GMP-compliant cell-product

    Get PDF
    Introduction: Mesenchymal stromal/stem cells (MSCs) derived from fat tissue are an encouraging tool for regenerative medicine. They share properties similar to the bone marrow-derived MSCs, but the amount of MSCs per gram of fat tissue is 500x higher. The fat tissue can easily be digested by collagenase, releasing a heterogeneous cell fraction called stromal vascular fraction (SVF) which contains a variable amount of stromal/stem cells. In Europe, cell products like the SVF derived from fat tissue are considered advanced therapy medicinal product (ATMPs). As a consequence, the manufacturing process has to be approved via GMP-compliant process validation. The problem of the process validation for SVF is the heterogeneity of this fraction. Methods: Here, we modified existing purification strategies by adding an additional plastic adherence incubation of maximal 20 hours after SVF isolation. The resulting cell fraction was characterized and compared to SVF as well as cultivated adipose-derived stromal/stem cells (ASCs) with respect to viability and cell yield, the expression of surface markers, differentiation potential and cytokine expression. Results: Short-term incubation significantly reduced the heterogeneity of the resulting cell fraction compared to SVF. The cells were able to differentiate into adipocytes, chondrocytes, and osteoblasts. More importantly, they expressed trophic proteins which have been previously associated with the beneficial effects of MSCs. Furthermore, GMP compliance of the production process described herein was acknowledged by the national regulatory agencies (DE_BB_01_GMP_2017_1018). Conclusion: Addition of a short purification-step after the SVF isolation is a cheap and fast strategy to isolate a homogeneous uncultivated GMP-compliant cell fraction of ASCs

    Improved in vitro test procedure for full assessment of the cytocompatibility of degradable magnesium based on ISO 10993-5/-12

    Get PDF
    Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nevertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continuous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristics were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and osteogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations

    Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice

    Get PDF
    Stable integration of HIV proviral DNA into host cell chromosomes, a hallmark and essential feature of the retroviral life cycle, establishes the infection permanently. Current antiretroviral combination drug therapy cannot cure HIV infection. However, expressing an engineered HIV-1 long terminal repeat (LTR) site-specific recombinase (Tre), shown to excise integrated proviral DNA in vitro, may provide a novel and highly promising antiviral strategy. We report here the conditional expression of Tre-recombinase from an advanced lentiviral self-inactivation (SIN) vector in HIV-infected cells. We demonstrate faithful transgene expression, resulting in accurate provirus excision in the absence of cytopathic effects. Moreover, pronounced Tre-mediated antiviral effects are demonstrated in vivo, particularly in humanized Rag2−/−γc−/− mice engrafted with either Tre-transduced primary CD4+ T cells, or Tre-transduced CD34+ hematopoietic stem and progenitor cells (HSC). Taken together, our data support the use of Tre-recombinase in novel therapy strategies aiming to provide a cure for HIV

    Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces

    No full text
    Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p &lt; 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP

    In Vitro Feasibility Analysis of a New Sutureless Wound-Closure System Based on a Temperature-Regulated Laser and a Transparent Collagen Membrane for Laser Tissue Soldering (LTS)

    No full text
    For the post-surgical treatment of oral wounds and mucosal defects beyond a certain size, the gold standard is still an autologous skin or mucosal graft in combination with complex suturing techniques. A variety of techniques and biomaterials has been developed for sutureless wound closure including different tissue glues or collagen patches. However, no wound covering that enables for sutureless fixation has yet been introduced. Thus, a new system was developed that allows for sutureless wound covering including a transparent collagen membrane, which can be attached to the mucosa using a specially modified 2&lambda; laser beam with integrated temperature sensors and serum albumin as bio-adhesive. The sutureless wound closure system was tested for its applicability and its cytocompatibility by an established in vitro model in the present study. The feasibility of the laser system was tested ex vivo on a porcine palate. The in vitro cytocompatibility tests excluded the potential release of toxic substances from the laser-irradiated collagen membrane and the bio-adhesive. The results of the ex vivo feasibility study using a porcine palate revealed satisfactory mean tensile strength of 1.2&ndash;1.5 N for the bonding of the membrane to the tissue fixed with laser of 980 nm. The results suggest that our newly developed laser-assisted wound closure system is a feasible approach and could be a first step on the way towards a laser based sutureless clinical application in tissue repair and oral surgery

    Managing NF2-associated vestibular schwannomas in children and young adults: review of an institutional series regarding effects of surgery and bevacizumab on growth rates, tumor volume, and hearing quality

    No full text
    We reviewed our experience in managing of NF2-associated vestibular schwannoma (VS) in children and young adults regarding the effect of surgery and postoperative bevacizumab treatment. A total of 579 volumetric and hearing data sets were analyzed. The effect of surgery on tumor volume and growth rate was investigated in 46 tumors and on hearing function in 39 tumors. Long-term hearing follow-up behavior was compared with 20 non-operated ears in additional 15 patients. Sixteen operated VS were treated with bevacizumab. Mutation analysis of the NF2 gene was performed in 25 patients. Surgery significantly slowed down VS growth rate. Factors associated with a higher growth rate were increasing patient age, tumor volume, and constitutional truncating mutations. Immediately after surgery, functional hearing was maintained in 82% of ears. Deterioration of hearing was associated with initial hearing quality, larger tumor volumes, and larger resection amounts. Average hearing scores were initially better in the group of non-operated VS. Over time, hearing scores in both groups worsened with a similar dynamic. During bevacizumab treatment of residual tumors, four different patterns of growth were observed. Decompression of the internal auditory canal with various degrees of tumor resection decreases the postoperative tumor growth rates. Carefully tailored BAEP-guided surgery does not cause additional hearing deterioration. Secondary bevacizumab treatment showed heterogenous effects both regarding tumor size and hearing preservation. It seems that postoperative tumor residuals, that grow slower, behave differently to bevacizumab than reported for not-operated faster growing VS

    Human Dental Pulp Cells form Spheroids in the Presence of Serum When Seeded on a Low-Attachment Cultural Surface

    No full text
    Spheroid formation is a characteristic feature of stem/progenitor cells. Under a serum-free cultural condition, human dental pulp cells can form spheroids. In the present study, we report that these cells can also form spheroids in the presence of serum when seeded on a low-attachment cultural surface. Dental pulp cells derived from three teeth were seeded with surface densities 103&ndash;105/cm2 in wells of low attachment and standard cultural plates. Fibroblasts were also seeded onto a low-attachment surface as a comparison. The growth of single spheroids of pulp cells was observed for 7 days. Pulp cells in spheroids and cells attached to the low-attachment surface were separated and further expanded on standard cultural surface in the monolayer and studied for their viability and osteogenic differentiation comparatively. In all three cultures of primary human dental pulp cells on low attachment surface, spheroids formed one day after seeding and grew in size over the 7 days of observation. The optimal seeding density for spheroids was around 104 cells/cm2 (105 cells/mL). Expanded pulp cells from the spheroids exhibited lower viability but higher osteogenic differentiation potential compared to pulp cells expanded from those attached to the surface of the low attachment plate. Human dental pulp cells have the specific capacity to forms spheroids when seeded on a low-attachment surface and may enable selection of a subpopulation with stronger differentiation potential and may also provide a strategy for culturing these cells in a three-dimensional organization without scaffolds
    corecore